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Chain Matrix Multiplication (矩阵链相乘)

Motivation. Suppose we want to multiply several matrices. This
will involve iteratively multiplying two matrices at a time.

Matrix multiplication is not commutative (in general
A×B ̸= B ×A), but it is associative:

A× (B × C) = (A×B)× C

We can compute product of matrices in many different ways,
depending on how we parenthesize it.

Are some of these better than others?

Complexity of Cik = Aij ×Bjk

Each element in C requires j multiplications, totally ik
elements ⇒ overall complexity Θ(ijk)
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Example

Suppose we want to multiply four matrices, A×B × C ×D, of
dimensions 50× 20, 20× 1, 1× 10, and 10× 100, respectively.

Parenthesize Computation Cost
A× ((B × C)×D) 20 · 1 · 10 + 20 · 10 · 100 + 50 · 20 · 100 120, 200

(A× (B × C))×D 20 · 1 · 10 + 50 · 20 · 10 + 50 · 10 · 100 60, 200

(A×B)× (C ×D) 50 · 20 · 1 + 1 · 10 · 100 + 50 · 1 · 100 7, 000

The order of multiplication order makes a big difference in the final
complexity.
Natural greedy approach of always perform the cheapest matrix
multiplication available may not always yield optimal solution

see second parenthesization as a counterexample
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Brute Force Algorithm

Q. How many different parenthesization methods (add brackets)
for A1A2 . . . An?

Observation. A particular parenthesiation can be represented
naturally by a full binary tree

leaves nodes: individual matrices
the root node: final product
interior nodes: intermediate products

D
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A B

((A×B)× C)×D

A

D

B C

A× ((B × C)×D)
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Estimate the Number of Possible Orders

The number of possible orders correspond to various full binary
trees with n leaves.

C(1) = 1, C(2) = 1, C(3) = C(1)C(2) + C(2)C(1)

C(4) = C(1)C(3) + C(2)C(2) + C(3)C(1)

Cn =
n−1∑
i=1

CiCn−i =
1

n+ 1

(
2n

n

)
The above formula is of convolution form, can be calculated via
generating function.

The result is known as Catalan number, which is exponential
in n
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Catalan Number

Catalan number (named after the Belgian mathematician Eugène
Charles Catalan). First discovered by Euler when counting the
number of different ways of dividing a convex polygon with n sides
into (n− 2) triangles.

C(n) =Ω

(
1

n+ 1

(2n)!

n!n!

)
//Stirling formula

=Ω

(
1

n+ 1

√
2π2n

(
2n
e

)2n
√
2π2n

(
n
e

)n√
2π2n

(
n
e

)n
)

= Ω(4n/(n3/2√π))
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Brute Force Algorithm

Catalan number Occur in various counting problems (often
involving recursively-defined objects)

number of parenthesis methods
number of full binary trees
number of monotonic lattice paths

Since Catalan number is exponential in n ; we certainly cannot
try each tree, with brute force thus ruled out.

We turn to dynamic programming.
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Dynamic Programming

The correspondence to binary tree is suggestive: for a tree to be
optimal, its subtrees must be also be optimal ⇒ satisfy optimal
substructure ; we do not have to try each tree from scratch

subproblems corresponding to the subtrees: products of the
form Ai ×Ai+1 × · · ·Aj

Optimized function:

C(i, j) = minimum cost of multiplying Ai ×Ai+1 × · · ·Aj

the corresponding dimension is mi−1,mi, . . . ,mj

Iteration relation:

C(i, j) =

{
0 i = j
mini≤k<j{C(i, k) + C(k + 1, j) +mi−1mkmj} i < j

Ai . . . Ak Ak+1 . . . Aj

mi−1 ×mk mk ×mj
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Recursive Approach (inefficient)

Algorithm 1: MatrixChain(C, i, j) // subproblem [i, j]

1: C(i, i) = 0, C(i, j)←∞;
2: s(i, j)← ⊥ //record split position;
3: for k ← i to j − 1 do
4: t← MatrixChain(C, i, k) + MatrixChain(C, k + 1, j) +

mi−1mkmj ;
5: if t < C(i, j) then //find better solution
6: C(i, j)← t;
7: s(i, j)← k;
8: end
9: end

10: return C(i, j);
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Complexity Analysis

Recurrence relation is:

T (n) =

{
O(1) n = 1∑n−1

k=1(T (k) + T (n− k) +O(1)) n > 1

O(1): sum and compare
T (n) =

∑n−1
k=1 T (k)+

∑n−1
k=1 T (n−k)+O(n) = 2

∑n−1
k=1 T (k)+O(n)

Claim. T (n) = Ω(2n−1)

Induction basis: n = 2, T (2) ≥ c = c12
2−1, let c1 = c/2.

Induction step: P (k < n)⇒ P (n).

T (n) =O(n) + c12

n−1∑
k=1

2k−1 //induction premise

≥O(n) + c12(2
n−1 − 1) = Ω(2n−1) //geometric series

essentially same as brute force algorithm
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Root of Inefficiency (Case n = 5)

different subproblems 15 vs. computing subproblems 81
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Iterative Approach (efficient)

size = 1: n different subproblems
C(i, i) = 0 for i ∈ [n] (no computation cost)

size = 2: n− 1 different subproblems
C(1, 2), C(2, 3), C(3, 4), . . . , C(n− 1, n)

. . .

size = i: n− i+ 1 different subproblems
. . .

size = n− 1: 2 different subproblems
C(1, n− 1), C(2, n)

size = n: original problem
C(1, n)
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Demo of n = 8

A1 A2 A3 A4 A5 A6 A7 A8

size = 2

size = 3

size = 4

size = 5

size = 6

size = 7

size = 8
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Algorithm 2: MatrixChain(C, n)
1: C(i, i)← 0, C(i, j)i ̸=j ← +∞;
2: for ℓ← 2 to n do //size of subproblem
3: for i = 1 to n− ℓ+ 1 do //left boundary i
4: j ← i+ ℓ− 1 //right boundary j;
5: for k ← i to j − 1 do //try all split position
6: t← C(i, k) + C(k + 1, j) +mi−1mkmj ;
7: if t < C(i, j) then
8: C(i, j)← t, s(i, j) = k //update
9: end

10: end
11: end
12: end

Algorithm 3: Trace(s, i, j) //initially i = 1, j = n

1: if i=j then return;
2: output k ← s(i, j), Trace(s, i, k), Trace(s, k + 1, j);
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Complexity Analysis

According to the algorithm
2: subproblem size
3: the left boundary of subproblem (the right boundary is
fixed in turn)
5: try all split position to find the optimal break point
Line 2, 3, 5 constitute three-fold loop, length of each loop is
O(n); the cost in the inner loop is O(1) ; complexity O(n3)

According to the memo
there are totally n2 elements in the memo, to determine the
value of each element, try and comparison cost is O(n) ;
complexity O(n3)

Trace complexity: n− 1 (number of interior nodes)
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Example

Matrix chain. A1A2A3A4A5, A1 : 30× 35, A2 : 35× 15,
A3 : 15× 5, A4 : 5× 10, A5 : 10× 20

ℓ = 2 C(1, 2) = 15750 C(2, 3) = 2625 C(3, 4) = 750 C(4, 5) = 1000

ℓ = 3 C(1, 3) = 7875 C(2, 4) = 4375 C(3, 5) = 2500

ℓ = 4 C(1, 4) = 9375 C(2, 5) = 7125

ℓ = 5 C(1, 5) = 11875

ℓ = 2 s(1, 2) = 1 s(2, 3) = 2 s(3, 4) = 3 s(4, 5) = 4

ℓ = 3 s(1, 3) = 1 s(2, 4) = 3 s(3, 5) = 3

ℓ = 4 s(1, 4) = 3 s(2, 5) = 3

ℓ = 5 s(1, 5) = 3

s(1, 5)⇒(A1A2A3)(A4A5)

s(1, 3)⇒A1(A2A3)

optimal computation order: (A1(A2A3))(A4A5)

minimum multiplication: C(1, 5) = 11875
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Binary Search Tree

Let S be an ordered set with elements x1 < x2 < · · · < xn. To
admit efficient search, we store them on the nodes of a binary tree.
Search: If x ∈ S, output the index. Else, output the interval.

1 2 3 4 5 6

x = 3.5

x vs. root
x < root, enter left subtree;
x > root, enter right subtree;
x = root, halt and output x;

x reaches leave nodes, halt, outputs
⊥.

4

2 6

1 3 5 L6

L0 L1 L2 L3 L4 L5

19 / 33



The Distribution of Search Element

When x
R←− S ⇒ balance binary tree is optimal

What if the distribution of x is not uniform?
Let S = (x1, . . . , xn). Consider intervals (x0, x1), (x1, x2), . . . ,
(xn−1, xn), (xn, xn+1), where x0 = −∞, xn+1 = +∞

Pr[x = xi] = bi, Pr[x ∈ (xi, xi+1)] = ai

The distribution of x over S ∪ S̄ is

P = (a0, b1, a1, b2, a2, . . . , bn, an)

Example: S = (1, 2, 3, 4, 5, 6). The distribution P of x is

(0.04, 0.1, 0.01, 0.2, 0.05, 0.2, 0.02, 0.1, 0.02, 0.1, 0.07, 0.05, 0.04)

x = 1, 2, 3, 4, 5, 6: 0.1, 0.2, 0.2, 0.1, 0.1, 0.05
x lies at interval: 0.04, 0.01, 0.05, 0.02, 0.02, 0.07, 0.04
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Binary Search Tree 1

4

2 6

1 3 5 L6

L0 L1 L2 L3 L4 L5

S = (1, 2, 3, 4, 5, 6)

(0.1, 0.2, 0.2, 0.1, 0.1, 0.05)

(0.04, 0.01, 0.05, 0.02, 0.02, 0.07, 0.04)

Average search times:

A(T1) =[1× 0.1 + 2× (0.2 + 0.05) + 3× (0.1 + 0.2 + 0.1)]

+ [3× (0.04 + 0.01 + 0.05 + 0.02 + 0.02 + 0.07)

+ 2× 0.04]

=1.8 + 0.71 = 2.51
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Binary Search Tree 2

1

L0 2

4L1

3 6

L2 L3
5

L4 L5

L6

S = (1, 2, 3, 4, 5, 6)

(0.1, 0.2, 0.2, 0.1, 0.1, 0.05)

(0.04, 0.01, 0.05, 0.02, 0.02, 0.07, 0.04)

Average search times:
A(T2) =[1× 0.1 + 2× 0.2 + 3× 0.1 + 4× (0.2 + 0.05) + 5× 0.1]

+ [1× 0.04 + 2× 0.01 + 4× (0.05 + 0.02 + 0.04)

+ 5× (0.02 + 0.07)] = 2.3 + 0.95 = 3.25
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Formula of Average Search Time

Set S�(x1, x2, . . . , xn)
Distribution P = (a0, b1, a1, b2, . . . , ai, bi+1, . . . , bn, an)

the depth of xi in T is d(xi), i = 1, 2, . . . , n.
depth is counted from 0
the k-level node requires k + 1 times compare

the depth of interval Ij is d(Ij), j = 0, 1, . . . , n.

Average search time

A(T ) =

n∑
i=1

bi(1 + d(xi)) +

n∑
j=0

ajd(Ij)

When the depth of all nodes increase by 1, the average search time
increases by:

n∑
i=1

bi +

n∑
j=0

aj
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Modeling of Optimal Search Tree

Problem. Given set S = (x1, x2, . . . , xn) and distribution of search
element P = (a0, b1, a1, b2, a2, . . . , bn, an)，

Goal. Find an optimal binary search tree (with minimal average
search times)
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Dynamic Programming

Subproblems: defined by (i, j), i is the left boundary, j is the right
boundary

dataset: S[i, j] = (xi, xi+1, . . . , xj)

distribution: P [i, j] = (ai−1, bi, ai, bi+1, . . . , bj , aj)

Input instance: S = (A,B,C,D,E)

P = (0.04, 0.1, 0.02, 0.3, 0.02, 0.1, 0.05, 0.2, 0.06, 0.1, 0.01)

Subproblem: (2, 4)

S[2, 4] = (B,C,D)

P [2, 4] = (0.02, 0.3, 0.02, 0.1, 0.05, 0.2, 0.06)
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Break Up to Subproblem

Using xk as root, break up one problem into two subproblems:
S[i, k − 1], P [i, k − 1]

S[k + 1, j], P [k + 1, j]

Example. Choose node B as root, break up the original problem
into the following two subproblems:
Subproblem: (1, 1)

S[1, 1] = (A), P [1, 1] = (0.04, 0.1, 0.02)

Subproblem: (3, 5)

S[3, 5] = (C,D,E),
P [3, 5] = (0.02, 0.1, 0.05, 0.2, 0.06, 0.1, 0.01)

B

A C D E
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Probability Sum of Subproblem

For subproblem S[i, j] and P [i, j], the probability sum in P [i, j]
(including elements and intervals) is:

w[i, j] =

j∑
s=i−1

as +

j∑
t=i

bt

Example of subproblem (2, 4)

S[2, 4] = (B,C,D)

P [2, 4] = (0.02, 0.3, 0.02, 0.1, 0.05, 0.2, 0.06)

w[2, 4] = (0.3+0.1+0.2)+(0.02+0.02+0.05+0.06) = 0.75
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Optimized Function

Optimized function OPT(i, j): the optimal average compare times
of subproblem (i, j) for S[i, j], P [i, j].
Parameterized optimized function. OPTk(i, j): optimal average
compare times with xk as root
Initial values: OPT(i, i− 1) = 0 for i = 1, 2, . . . , n, n+ 1
corresponds to empty subproblem.

Example: S = (A,B,C,D,E)

1 choose A as root (k = 1), yield subproblem (1, 0) and (2, 5),
(1, 0) is an empty subproblem: corresponding to S[1, 0],
OPT(1, 0) = 0

2 choose E as root (k = 5), yield subproblem (1, 4) and (6, 5),
(6, 5) is an empty subproblem: corresponding to S[6, 5],
OPT(6, 5) = 0
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Iterate Relation for Optimized Function

OPT(i, j) = min
i≤k≤j

{OPTk(i, j)}, 1 ≤ i ≤ j ≤ n

= min
i≤k≤j

{OPT(i, k − 1) + OPT(k + 1, j) + w[i, j]}

xk

xi, . . . , xk−1 xk+1, . . . , xj

the depth of all nodes in left subtree and right subtree
increase by 1

w[i, k − 1] + bk + w[k + 1, j] = w[i, j]
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Proof of OPTk(i, j)

OPTk(i, j)

= (OPT(i, k − 1) + w[i, k − 1]) + (OPT(k + 1, j) + w[k + 1, j]) + bk

= (OPT(i, k − 1) + OPT(k + 1, j)) + (w[i, k − 1] + bk + w[k + 1, j])

= (OPT(i, k − 1) + OPT(k + 1, j))

+

(
k−1∑

s=i−1

as +

k−1∑
t=i

bt

)
+ bk +

(
j∑

s=k

as +

j∑
t=k+1

bt

)

= (OPT(i, k − 1) + OPT(k + 1, j)) +

j∑
s=i−1

as +

j∑
t=i

bt //simplify

= OPT(i, k − 1) + OPT(k + 1, j) + w[i, j]
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Pseudocode

Computation order: the size of subtree grows from 1 to n

Algorithm 4: BinarySearchTree(S, P, n)
1: OPT(i, i− 1)← 0 for all i ∈ [1, n+ 1];
2: OPT(i, j)← +∞ for all i ≤ j;
3: for ℓ← 1 to n do //size of subproblem
4: for i = 1 to n− ℓ+ 1 do //left boundary i
5: j ← i+ ℓ− 1 //right boundary j;
6: for k ← i to j do //try all split position
7: t← OPT(i, k − 1) + OPT(k + 1, j) + w[i, j];
8: if t < OPT(i, j) then
9: OPT(i, j)← t, s(i, j) = k //update

10: end
11: end
12: end
13: end
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Demo

OPT(i, j) = min
i≤k≤j

{OPT(i, k − 1) + OPT(k + 1, j) + w[i, j]}

for 1 ≤ i ≤ j ≤ n

OPT(i, i− 1) = 0, i = 1, 2, . . . , n, n+ 1

B 0.3

A0.1 D 0.2

C
0.1

E 0.1
L0

0.04

L1

0.02 L2

0.02

L3

0.05

L4

0.06

L5

0.01

choose B as root, k = 2
OPT(1, 1) = 0.16
OPT(3, 5) = 0.88
OPT(3, 3) = 0.17
OPT(5, 5) = 0.17
w[3, 5] = 0.54

OPT(1, 5) =1 + min
k∈[5]
{OPT(1, k − 1),OPT(k + 1, 5)}

=1 + (OPT(1, 1) + OPT(3, 5)) = 1 + (0.16 + 0.88) = 2.04
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Complexity Analysis

OPT(i, j) = min
i≤k≤j

{OPT(i, k − 1) + OPT(k + 1, j) + w[i, j]}

for 1 ≤ i ≤ j ≤ n

OPT(i, i− 1) = 0, i = 1, 2, . . . , n, n+ 1

The number of (i, j) combination is O(n2)

For each OPT(i, j), computation requires computing k terms and
finding min. The cost of each term computation is constant time.

Time complexity: T (n) = O(n3)

Space complexity: S(n) = O(n2)
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