Design and Analysis of Algorithms
Dynamic Programming (I1)

@ Chain Matrix Multiplication

© Optimal Binary Search Tree

1/33

Outline

@ Chain Matrix Multiplication

2/33

Chain Matrix Multiplication (4E/%4%48 %)

Motivation. Suppose we want to multiply several matrices. This
will involve iteratively multiplying two matrices at a time.

e Matrix multiplication is not commutative (in general
A x B # B x A), but it is associative:

Ax (BxC)=(AxB)xC

@ We can compute product of matrices in many different ways,
depending on how we parenthesize it.

Are some of these better than others?

Complexity of Cj, = A;j X Bjj,
@ Each element in C requires j multiplications, totally ¢k
elements = overall complexity O(ijk)

3/33

Example

Suppose we want to multiply four matrices, A x B x C x D, of
dimensions 50 x 20, 20 x 1, 1 x 10, and 10 x 100, respectively.

Parenthesize Computation Cost
AXx((BxC)xD)|20-1-10+20-10-100+50-20-100 | 120,200
(Ax (BxC))xD | 20-1-10+50-20-10+50-10-100 | 60,200
(AxB)x(CxD) | 50-20-1+1-10-100+50-1-100 7,000

4/33

Example

Suppose we want to multiply four matrices, A x B x C x D, of
dimensions 50 x 20, 20 x 1, 1 x 10, and 10 x 100, respectively.

Parenthesize Computation Cost
AXx((BxC)xD)|20-1-10+20-10-100+50-20-100 | 120,200
(Ax (BxC))xD | 20-1-10+50-20-10+50-10-100 | 60,200
(AxB)x(CxD) | 50-20-1+1-10-100+50-1-100 7,000

The order of multiplication order makes a big difference in the final

complexity.

4/33

Example

Suppose we want to multiply four matrices, A x B x C x D, of
dimensions 50 x 20, 20 x 1, 1 x 10, and 10 x 100, respectively.

Parenthesize Computation Cost
AXx((BxC)xD)|20-1-10+20-10-100+50-20-100 | 120,200
(Ax (BxC))xD | 20-1-10+50-20-10+50-10-100 | 60,200
(AxB)x(CxD) | 50-20-1+1-10-100+50-1-100 7,000

The order of multiplication order makes a big difference in the final
complexity.

Natural greedy approach of always perform the cheapest matrix
multiplication available may not always yield optimal solution

@ see second parenthesization as a counterexample

4/33

Brute Force Algorithm

Q. How many different parenthesization methods (add brackets)
for AlAg .. An7

5/33

Brute Force Algorithm

Q. How many different parenthesization methods (add brackets)
for AlAg PN An7

Observation. A particular parenthesiation can be represented
naturally by a full binary tree

@ leaves nodes: individual matrices
@ the root node: final product

@ interior nodes: intermediate products

(Ax B)xC)xD Ax ((BxC)xD,)

(2 (2
() O @ O
() © () ©
@ ® ® ©

5/33

Estimate the Number of Possible Orders

The number of possible orders correspond to various full binary
trees with n leaves.

The above formula is of convolution form, can be calculated via
generating function.

@ The result is known as Catalan number, which is exponential
inn

6/33

Catalan Number

Catalan number (named after the Belgian mathematician Eugeéne
Charles Catalan). First discovered by Euler when counting the
number of different ways of dividing a convex polygon with n sides
into (n — 2) triangles.

PSP

<D 8
N ©O

n+1 nn! > //Stirling formula
_of 1t V2r2n (22)*"

—_
—

2n)!

7/33

Brute Force Algorithm

Catalan number Occur in various counting problems (often
involving recursively-defined objects)

@ number of parenthesis methods
@ number of full binary trees

@ number of monotonic lattice paths

Since Catalan number is exponential in n ~ we certainly cannot
try each tree, with brute force thus ruled out.

We turn to dynamic programming.

8/33

Dynamic Programming

The correspondence to binary tree is suggestive: for a tree to be
optimal, its subtrees must be also be optimal = satisfy optimal
substructure ~» we do not have to try each tree from scratch

@ subproblems corresponding to the subtrees: products of the
form Az X Ai—l—l X o 'Aj

Optimized function:

C(7,7) = minimum cost of multiplying A; x A;y1 x - A;j

the corresponding dimension is m;_1,m;, ..., m;

Iteration relation:

. . 0 i:j
C(i,j) = { min;<,<;{C(i,k) + C(k + 1,§) + mi_ymym;} i<j

A; Ar | A . A

mi—1 X My mg X m;

9/33

Recursive Approach (inefficient)

Algorithm 1: MatrixChain(C, i, j) // subproblem [i, j]

1 C(i,4) =0, C(3,]) < oo;

2. 8(i,7) + L / /record split position;

3: fork<itoj—1do

4: t < MatrixChain(C, i, k) + MatrixChain(C, k + 1,) +
mi—1mym;;

5: if t <C(i,j) then //find better solution

6: C(Z,j) —t;

7: s(i,7) < k;

8: end

9: end

10: return C(i,7);

10/33

Complexity Analysis

Recurrence relation is:

0(1) n=1
T(n) = { Tk +T(n—k)+0(1) n>1

@ O(1): sum and compare
T(n) = 321 T(k)+ 22321 T(n—k)+0(n) = 232371 T(k)+0(n)

Claim. T(n) = Q2" 1)
e Induction basis: n =2, T(2) > ¢ = 12271, let ¢; = ¢/2.
e Induction step: P(k < n) = P(n).

n—1
T(n) =0(n) + 12 Z 2h—1 //induction premise
k=1

>0(n) +c12(2" 1 —1) = Q(2"1) //geometric series

essentially same as brute force algorithm

11/33

Root of Inefficiency (Case n = 5)

different subproblems 15 vs. computing subproblems 81

12/33

Root of Inefficiency (Case n = 5)

Those who cannot remember the
past are condemned to repeat it.

- Dynamic Programming

12/33

Iterative Approach (efficient)

size = 1: n different subproblems

e C(i,i) =0 for i € [n] (no computation cost)
size = 2: n — 1 different subproblems

e ((1,2), C(2,3), C(3,4), ..., C(n—1,n)

size = 1: n — ¢ + 1 different subproblems
size = n — 1: 2 different subproblems
o C(1,n—1), C(2,n)

size = n: original problem
e C(1,n)

13/33

Demo of n = 8§

Ay Ay A3 Ay A5 Ag Ar Ag

size =2
size = 3
size =4
size=1>5
size = 6
size=1T7
size =8

14/33

Algorithm 2: MatrixChain(C,n)
1: C(Z,Z) +~ 0, C(Z,])Wg] < o0,

2: for { < 2 ton do //size of subproblem
3: fori=1ton—/{+1do //left boundary i
4: j—i+L—-1 //right boundary j;

5: for k< itoj—1do //try all split position
6: t<—C’(i,k:)-I-C'(k-l—l,j)—i—mi_lmkmj;

7: if t <C(i,7) then

8: C(i,j) «t, s(i,j) =k //update
o: end

10: end

11: end

12: end

Algorithm 3: Trace(s,4,j) //initially i =1, j =n

1: if i=j then return;
2: output k < s(i,7), Trace(s,i,k), Trace(s,k + 1,7);

15/33

Complexity Analysis

According to the algorithm
@ 2: subproblem size

@ 3: the left boundary of subproblem (the right boundary is
fixed in turn)

@ 5: try all split position to find the optimal break point

@ Line 2, 3,5 constitute three-fold loop, length of each loop is
O(n); the cost in the inner loop is O(1) ~ complexity O(n?)

16/33

Complexity Analysis

According to the algorithm
@ 2: subproblem size

@ 3: the left boundary of subproblem (the right boundary is
fixed in turn)

@ 5: try all split position to find the optimal break point
@ Line 2, 3,5 constitute three-fold loop, length of each loop is
O(n); the cost in the inner loop is O(1) ~ complexity O(n?)
According to the memo

o there are totally n? elements in the memo, to determine the
value of each element, try and comparison cost is O(n) ~
complexity O(n?3)

16/33

Complexity Analysis

According to the algorithm
@ 2: subproblem size

@ 3: the left boundary of subproblem (the right boundary is
fixed in turn)

@ 5: try all split position to find the optimal break point
@ Line 2, 3,5 constitute three-fold loop, length of each loop is
O(n); the cost in the inner loop is O(1) ~ complexity O(n?)
According to the memo

o there are totally n? elements in the memo, to determine the
value of each element, try and comparison cost is O(n) ~
complexity O(n?3)

Trace complexity: n — 1 (number of interior nodes)

16/33

Example

Matrix chain. A1 AsA3A4As, A : 30 x 35, Ay : 35 x 15,
Az :15 x5, Ay :5x 10, A5 : 10 x 20

7=2 [O(L,2) = 15750 | C(2,3) = 2625 | C(3,4) =750 | C(4,5) = 1000
7=3| C(1,3)=7875 | C(2,4)=4375 | C(3,5) = 2500
7=4| O(1,4)=9375 | O(2,5) = 7125
7=5 | C(L,5) = 11875
=2 s(1,2) = 5(3,4) =3
7= s(2,4) =3 | 5(3,5) =3
L= s(1,4) =3 | s(2,5) =3
7=5 | s(1,5)=3

S(l, 5) :>(A1A2A3)(A4A5)

S(l, 3) :>A1(A2A3)
@ optimal computation order: (A;(A243))(A4A45)
e minimum multiplication: C(1,5) = 11875

17/33

Outline

© Optimal Binary Search Tree

18/33

Binary Search Tree

Let S be an ordered set with elements 1 < 20 < --- < x,,. To
admit efficient search, we store them on the nodes of a binary tree

Search: If x € S, output the index. Else, output the interval.
=39
[1]2]3]4]5]06]

X VS. root

@ x < root, enter left subtree;
@ x > root, enter right subtree;
@ x = root, halt and output z;

x reaches leave nodes, halt, outputs
L.

19/33

The Distribution of Search Element

When z & S = balance binary tree is optimal
What if the distribution of x is not uniform?

Let S = (z1,...,2,). Consider intervals (zg,z1), (1, 22), ...
(Tn—1,Zn), (Tn, Tn+1), Where zg = —00, Tpy1 = +00
o Pr[z = z;] = b;, Prix € (x4, zi41)] = a;

The distribution of x over SU S is

P = (a07b17a17b27a27’ . '7bn7an)

Example: S = (1,2,3,4,5,6). The distribution P of x is
(0.04,0.1,0.01,0.2,0.05,0.2,0.02,0.1,0.02,0.1,0.07,0.05,0.04)

r=1,2,3,4,56: 0.1,0.2 0.2, 0.1, 0.1, 0.05
z lies at interval: 0.04, 0.01, 0.05, 0.02, 0.02, 0.07, 0.04

20/33

Binary Search Tree 1

S =(1,2,3,4,5,6)
(0.1,0.2,0.2,0.1,0.1,0.05)
(0.04,0.01,0.05,0.02, 0.02,0.07, 0.04)

Average search times:

A(Ty) =[1 % 0.1 42 x (0.2 4 0.05) +3 x (0.1 +0.2+0.1)]
+ 3 % (0.04 + 0.01 + 0.05 + 0.02 + 0.02 + 0.07)
+2x0.04]

=1.8+0.71 = 2.51

21/33

Binary Search Tree 2

S =(1,2,3,4,5,6)
(0.1,0.2,0.2,0.1,0.1,0.05)
(0.04,0.01,0.05, 0.02, 0.02, 0.07, 0.04)

Average search times:

A(T3) =[1x0.142x%x0243x0.14+4x(0.2+0.05)+5 x 0.1]
+[1 x0.0442 % 0.01 +4 x (0.05+ 0.02 4+ 0.04)
+5 x (0.0240.07)] =2.3+0.95=3.25

22/33

Formula of Average Search Time

Set S (x1,22,...,2p)
Distribution P = (ao, bi,a1,b2,...,ai,bi41,...,bn,an)
o the depth of z; in T"is d(z;), i =1,2,...,n
o depth is counted from 0
e the k-level node requires k£ 4+ 1 times compare

o the depth of interval I; is d(I;), j =0,1,...,n

Average search time

When the depth of all nodes increase by 1, the average search time

increases by:
n n
Sh+n
i=1 §=0

23/33

Modeling of Optimal Search Tree

Problem. Given set S = (z1,x2,...,2,) and distribution of search
element P = (ao, bi,a1,be,as,...,by, an),

Goal. Find an optimal binary search tree (with minimal average
search times)

111
C/Nan
OOnn
OEO.
Dynamic
Programming

24/33

Dynamic Programming

Subproblems: defined by (i, 7), i is the left boundary, j is the right
boundary

o dataset: S[i,j] = (wi, Tit1,. ..,)
@ distribution: P[’L,j] = (ai_l, bi,ai, biy1,. .., bj, CL]')

Input instance: S =(A,B,C,D, E)
P = (0.04,0.1,0.02, 0.3,0.02,0.1,0.05, 0.2, 0.06, 0.1,0.01)
Subproblem: (2,4)

e S[2,4] =(B,C,D)

e P[2,4] = (0.02,0.3,0.02,0.1,0.05,0.2,0.06)

25/33

Break Up to Subproblem

Using zj, as root, break up one problem into two subproblems:
e Sli,k —1], Pli,k —1]
e Slk+1,j], Plk+1,j]
Example. Choose node B as root, break up the original problem
into the following two subproblems:
Subproblem: (1,1)
e S[1,1] = (A), P[1,1] = (0.04,0.1,0.02)
Subproblem: (3,5)

e S[3,5] = (C,D,E),
P[3,5] = (0.02,0.1,0.05,0.2,0.06,0.1,0.01)

@ 006

26/33

Probability Sum of Subproblem

For subproblem S|i, j] and P, j], the probability sum in P, j]
(including elements and intervals) is:

wli, j] = Z aS+th

s=i—1

Example of subproblem (2,4)
e 52,4 =(B,C,D)
e P[2,4] =(0.02,0.3,0.02,0.1,0.05,0.2,0.06)
e w(2,4] = (0.3+0.140.2) +(0.024+0.0240.05+0.06) = 0.75

27/33

Optimized Function

Optimized function OPT (i, j): the optimal average compare times
of subproblem (3, j) for S[i, j], P[i, j].
Parameterized optimized function. OPTg(4,7): optimal average

compare times with x; as root

Initial values: OPT(i,i —1)=0fori=1,2,...,n,n+1
corresponds to empty subproblem.

Example: S = (A4,B,C,D, E)

@ choose A as root (k = 1), yield subproblem (1,0) and (2,5),
(1,0) is an empty subproblem: corresponding to S[1,0],
OPT(1,0) = 0

@ choose E as root (k = 5), yield subproblem (1,4) and (6,5),
(6,5) is an empty subproblem: corresponding to S[6, 5],
OPT(6,5) = 0

28/33

Iterate Relation for Optimized Function

OPT(i,j) = min{OPT.(i,j)},1<i<j<mn

i<k<j

= min {OPT(i,k — 1) + OPT(k 4+ 1,5) + wli, j]}
i<k<j

Tk

iy -y Th—1

@ the depth of all nodes in left subtree and right subtree

increase by 1

Tht1, - - -

y Lj

29/33

Proof of OPT(i,)

OPTL(4,7)
= (OPT(i,k —1)+w[i,k — 1)) + (OPT(k+1,7) + w[k + 1, j]) + bs
= (OPT(i, k)+OPT(k+1 7))+ (wli, k — 1] + by + wlk + 1, 7])
= (OPT(i,k — 1)+ OPT(k + 1,7))
k—1 k—1 7
+1Y as—i-th) + by + (Zas > bt>
s=1—1 = t=k+1

J J
= (OPT(i,k— 1)+ OPT(k+1,5)) + > as+» b //simplify

s=1—1

=OPT(i,k—1)+OPT(k+1,j) + w[i, j]

30/33

Pseudocode

Computation order: the size of subtree grows from 1 to n

Algorithm 4: BinarySearchTree(S, P, n)

1: OPT(i,i—1) <=0 for all i € [1,n + 1];
2. OPT(4,j) < +oo for all i < j;

3. for { <1 ton do //size of subproblem
4 fori=1ton—{¢+1do //left boundary i
5: je—i+e—1 //right boundary j;

6: for k < i to j do //try all split position
7: t < OPT(i,k—1)4+OPT(k+1,j) + wls, j];

8: if t <OPT(i,7) then

9: OPT(i,j) « t, s(i,5) =k //update
10: end

11: end

12: end

13: end

31/33

Demo

OPT(i,j) = g}gig{OPT(i, kE—1)4+OPT(k+1,j) + wli, j]}
i<k<j

for1<i<j<n
OPT(i,i—1)=0,i=1,2,...,n,n+1

choose B as root, £k =2
OPT(1,1) =0.16
OPT(3,5) = 0.88
OPT(3,3) =0.17
OPT(5,5) = 0.17
w[3,5] = 0.54

0.02 0.05 0.06 0.01
OPT(1,5) =1+ ’Icni[?]{OPT(l, k—1),0PT(k+1,5)}
€

=1+ (OPT(1,1) + OPT(3,5)) = 1 + (0.16 + 0.88) = 2.04

32/33

Complexity Analysis

OPT(i,j) = min {OPT(i,k — 1) + OPT(k + 1,j) + wlé, j]}

i<k<j
for1<i<j<n
OPT(i,i—1)=0,i=1,2,...,n,n+1

The number of (i,5) combination is O(n?)

For each OPT(4,7), computation requires computing k terms and
finding min. The cost of each term computation is constant time.

e Time complexity: T'(n) = O(n?)
@ Space complexity: S(n) = O(n?)

33/33

	Chain Matrix Multiplication
	Optimal Binary Search Tree

